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1 Introduction

To the leading order, the low-energy dynamics of a stack of N parallel D-branes is described

by the super Yang-Mills action with U(N) gauge symmetry and the couplings to the bulk

fields. In string theory, D-branes carry R-R charges and couple to R-R fields. The form

of interaction is given by Wess-Zumino(WZ)-type action [1–3]. Unlike the case of a single

Dp-brane where it couples only to R-R fields of rank p + 1 or less, a stack of N parallel

D-branes couples to all even-form R-R fields in type IIB string theory and to all odd-form

R-R fields in type IIA string theory.

Analogous to the D-branes of string theory, in M-theory, we have the M2- and M5-

branes and the corresponding three- and six-form fields. About their dynamics, the con-

struction of the world-volume action of multiple M-branes as well as their coupling to the

form fields is more difficult than that of multiple D-branes. Recently the world-volume

description of low-energy dynamics of multiple M2-branes is available, which is Bagger-

Lambert-Gustavsson (BLG) theory with N = 8 supersymmetry and SU(2)×SU(2) gauge

symmetry [4, 5] and Aharony-Bergman-Jafferis-Maldacena (ABJM) theory with N = 6

manifest supersymmetry and U(N)×U(N) (or SU(N)×SU(N) gauge symmetry) [6]. Once

the action of world-volume fields is obtained, reproduction of its string theory limit is an

attractive research direction. The reduction to type IIA string theory of the BLG theory

upon circle compactification in the direction transverse to the M2-brane has been achieved

in ref. [7, 8].

Despite an overwhelming progress in the understanding of the world-volume action of

multiple M2-branes, a little have been done to couple them to the bulk form fields [9, 10].

Therefore, it is intriguing to construct the mutual interaction between the three- or six-form

fields and the world-volume fields in the context of BLG and ABJM theories. It is the main

objective of this paper to make a proposal for the action which describes the interaction

between the M2-branes and the form fields of arbitrary transverse field dependence in the
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context of BLG theory and to verify the proposal by reducing it to a similar interaction

term in type IIA string theory through circle compactification.

To see the importance of these interaction terms, we make a quick comparison between

M2-brane dynamics and the corresponding D2-brane in string theory. In analogy with D2-

brane dynamics, in the presence of nonvanishing three-form and dual six-form fields, the

low energy dynamics of multiple parallel M2-branes is expected to be described by both

their world-volume action, the BLG action SBLG in our case, and the coupling between

M2-branes and form fields SC ,

S11 = SBLG + SC . (1.1)

On the other hand, in the type IIA superstring theory the D2-brane action possesses the

Dirac-Born-Infeld (DBI) type (or Yang-Mills type in low energy limit) world-volume action

of N parallel D2-branes SDBI and the R-R coupling1 SC̃ ,

S10 = SDBI + SC̃ . (1.2)

In nontrivial background, the DBI action is given in terms of the gauge-invariant field

strength F̃µν + B̃µν , where F̃µν is the field strength of the U(N) gauge field and B̃µν is

the NS-NS two-form field. In the absence of SC , it have been verified that, upon circle

compactification, the action SBLG reduces to Yang-Mills matter action composed of only

F̃µν . In this paper we show that, after the compactification, the presence of SC not only

produces SC̃ it also gives the missing B̃µν piece of the DBI action in the NS-NS background.

Some particular configuration of form fields coupled to D-branes or M-branes can

be regarded as the mass deformation of world-volume theories [11, 12]. The (SUSY-

preserving) mass deformation of BLG theory is explicitly constructed in [13, 14], which

contains the quartic coupling among scalar fields as well as the quadratic mass terms. We

show that the WZ-type coupling with particular configuration of form fields reproduces

this quartic coupling.

The remaining part of this paper is organized as follows. In section 2 we put forward

our proposal for the three- and six-form couplings to multiple M2-branes in BLG theory.

Our proposal is made in parallel with the known multiple D2-brane coupling to R-R forms.

In section 3 we show that the circle compactification of the action reproduces the corre-

sponding action in ten-dimensional IIA string theory. In section 4 we single out a particular

term in the six-form coupling and show that, with a proper choice of the constant back-

ground form field, it gives rise to the quartic mass deformation of the BLG theory. Section

5 is devoted to conclusions and discussions.

2 Coupling between M2-branes and form fields in BLG theory

In string theory the coupling of any Dp-brane to R-R form fields C̃(n) is given by the

WZ-type action as [1–3]

SC̃ = µp

∫

p+1
STr

(

P
[

eiλ̃i
X̃

i
X̃

∑

C̃(n)e
B̃

]

eλ̃F̃
)

, (2.1)

1We put tildes for the fields and the parameters in string theory.
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where µp is R-R charge of the Dp-brane, λ̃ = 2πl2s is the string scale, X̃ is the transverse

scalar field, B̃ is the NS-NS two-form field, and F̃ = dÃ is field strength of the gauge field

Ã. The trace is taken over the gauge indices, P [. . .] denotes pullback, the summation is

taken over all the R-R forms, and iΦ represents an interior product by Φi, explicitly written

iΦC̃(n) =
1

(n − 1)!
ΦiC̃ii1...in−1

dxi1 ∧ . . . ∧ dxin−1 . (2.2)

For later convenience we expand the exponential eiλ̃i
X̃

i
X̃ and write explicitly the first few

terms in the case of p = 2,

SC̃ = µ2

∫

1

3!
dxµ ∧ dxν ∧ dxρ STr

{

C̃µνρ + 3λ̃C̃µνiD̃ρX̃i + 3λ̃2C̃µijD̃νX̃iD̃ρX̃j

+ λ̃3C̃ijkD̃µX̃iD̃νX̃jD̃ρX̃k − 3iλ̃2C̃µijX̃iX̃jFνρ − 3iλ̃3C̃ijkX̃iX̃jD̃µX̃kFνρ

− iλ̃C̃µνρijX̃iX̃j − 3iλ̃2C̃µνijkX̃iX̃jD̃ρX̃k − 3iλ̃3C̃µijklX̃iX̃jD̃νX̃kD̃ρX̃l

− iλ̃4C̃ijklmX̃iX̃jD̃µX̃kD̃νX̃lD̃ρX̃m −
3

2
λ̃3C̃µijklX̃iX̃jX̃kX̃lFνρ

−
3

2
λ̃4C̃ijklmX̃iX̃jX̃kX̃lD̃µX̃mFνρ + · · ·

}

, (2.3)

where X̃i (i = 1, 2, . . . , 7) are seven transverse adjoint scalar fields with D̃µX̃i = ∂µX̃i +

i[Aµ, X̃i]. Here we omitted the C̃∧B̃-terms for simplicity. In M-theory we naturally expect

a similar coupling between the M-branes (M2- and M5-branes) and the antisymmetric form

fields (the three-form field C(3) and the dual six-form field C(6)) [15]. Since B̃ is already a

part of C(3), C8ij ∼ B̃ij for the compactified eighth direction, the expected action involves

the interaction between the form fields and the world-volume fields. In the following, we

will consider the BLG theory and construct an analogue of the coupling between the world-

volume fields and the form fields. Instead of the original formulation based on three-algebra,

we employ a familiar gauge theory formulation [16, 17].

We begin with the BLG theory with eight transverse bi-fundamental scalar fields XI

(I = 1, 2, . . . , 8) and two gauge fields A and Â of SU(2)×SU(2) gauge symmetry. The

bosonic part of the action is

Sbos = SX + SCS + SC . (2.4)

The first two are well established and are given by

SX =

∫

d3xTr

[

− (DµXI)
†DµXI −

32π2

3k2
XIJKX†

IJK

]

, (2.5)

SCS =
k

4π

∫

d3x ǫµνρTr

(

Aµ∂νAρ +
2i

3
AµAνAρ − Âµ∂νÂρ −

2i

3
ÂµÂνÂρ

)

, (2.6)

where k is the Chern-Simons level and we have used the notation

DµXI = ∂µXI + iAµ − iXI Âµ, XIJK ≡ X[IX
†
JXK]. (2.7)

– 3 –



J
H
E
P
1
0
(
2
0
0
9
)
0
2
2

Due to T-duality between type IIA and IIB string theories, one can restrict possible

interaction terms between D-branes and R-R form fields. The exponential factor of the

gauge field F̃ in the R-R coupling (2.1) is introduced along the line of open string tadpole

computation and is compatible with the T-duality [1–3, 18]. In addition gauge invariance

on the D-brane requires B̃ + λ̃F̃ combination and it justifies the exponential factor of the

NS-NS two-form field in (2.1). Unlike the superstring theories, however, there seems no

concrete guideline for the interactions between M-branes and form fields in M-theory yet.

The candidate for the WZ-type coupling between M2-branes and form fields, which is linear

in the form fields, is

SC =

∫

2+1
Tr

(

µ2P [C(3)] + µ′
2P [〈iX iX iX〉C(6)]

)

(2.8)

=

∫

1

3!
d3x ǫµνρ Tr

{

µ2

2

[

1

2

(

Ĉµνρ + Cµνρ

)

+ 3λCµνI(DρXI)
†

+
3

2
λ2

(

ĈµIJ(DνXI)
†DρXJ + CµIJDνXI(DρXJ)†

)

+ λ3CIJK(DµXI)
†DνXJ (DρXK)†

]

+ (c.c.)

+
µ′

2

2

[

CµνρIJKX†
IJK +

3

2
λĈµνIJKL〈〈X

†
IJKDρXL〉〉

+
3

2
λCµνIJKL〈〈XIJK(DρXL)†〉〉

+ 3λ2CµIJKLM〈〈X†
IJKDνXL(DρXM )†〉〉

+
1

2
λ3ĈIJKLMN〈〈X†

IJKDµXL(DνXM )†DρXN 〉〉

+
1

2
λ3CIJKLMN〈〈XIJK(DµXL)†DνXM (DρXN )†〉〉

]

+ (c.c.)

}

,

(2.9)

where µ2 is M2-brane tension, λ = 2πl
3/2
P with Planck length lP, and µ′

2 = βλµ2. Dimen-

sionless parameter β will be fixed by requiring that when reduced to ten dimensions this

action reproduces the correct D2-brane coupling to R-R and NS-NS form fields in type IIA

superstring theory. The C and Ĉ fields in (2.9) are the pullback fields of C(3) and C(6).

For pullback, the eight transverse coordinates are simply replaced with the scalar fields,

λXI and λX†
I . Since the transverse scalar fields, XI and X†

I , in BLG theory transform

respectively in bifundamental and anti-bifundamental representations, so do the pullbacked

transverse scalar fields,

λXI → U(λXI)Û
†, λX†

I → Û(λX†
I )U †, (2.10)

where U (Û) is an element of the left (right) SU(2) gauge group. Suppose we have

form fields with possible dependence of the transverse coordinates. Then, to maintain

the SU(2)×SU(2) gauge symmetry, the various form fields after the pullback and their

gauge transformation properties should appropriately be chosen. When XI and X†
I and

– 4 –
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their covariant derivatives are multiplied, gauge invariance of every term requires that the

bifundamental field and anti-bifundamental field are alternately producted. Then, with

the help of trace property, we specifically read the gauge transformation rules of all the

pullbacked form fields in (2.9) as

Ĉµνρ → Û ĈµνρÛ
†, Cµνρ → UCµνρU

†, CµνI → UCµνI Û
†,

ĈµIJ → Û ĈµIJ Û †, CµIJ → UCµIJU †, CIJK → UCIJKÛ †,

CµνρIJK → UCµνρIJKÛ †, ĈµνIJKL → Û ĈµνIJKLÛ †, CµνIJKL → ÛCµνIJKLÛ †,

CµIJKLM → UCµIJKLM Û †, ĈIJKLMN → Û ĈIJKLMN Û †, CIJKLMN → UCIJKLMNU †.

(2.11)

The bracket 〈iX iX iX〉 denotes interior products by XIJK and its Hermitian conjugate

X†
IJK in gauge invariant manner. We also introduced the notation 〈〈 . . .〉〉 to symmetrize

objects inside the trace, for instance,

〈〈X†
IJKDνXL(DρX)†M 〉〉

=
1

3

[

X†
IJKDνXL(DρXM )† + (DνXL)†XIJK(DρXM )† + (DνXL)†DρXMX†

IJK

]

.

We also note that the different powers of the Planck length lP in front of some of the terms

in the action are chosen based on dimension counting and the (2π)n factors are inserted to

mimic the similar factors in ten dimensions.

In ref. [9], the authors proposed the WZ-type couplings in M-theory in terms of 3-

algebras with Euclidean and Lorentzian metrics. Some of terms of their proposal for the

WZ-type action resemble those in our action (2.3), however, in ref. [9] the authors assumed

that the three- and six-form fields do not depend on the transverse scalar fields and so

transform trivially under the gauge transformation. To get a gauge invariant action they

introduced symmetrized constant tensors originated from symmetrized trace of generators

with 3-algebra indices. For a specific representation of the 3-algebra, the symmetrized

tensors satisfying the gauge invariance of the action were obtained as functions of structure

constant of the 3-algebra. After that, ten-dimensional WZ-type action was obtained by

using the Higgs mechanism proposed in ref. [7]. Since the resulting action is composed

of constant form fields and symmetric tensors depending on specific representation of 3-

algebra, it is not clear how to relate the results to the known WZ-type action (2.1) expressed

by U(2)-adjoints.

3 Reduction from M-theory to IIA string theory

In the previous section we constructed the analogue of WZ-type coupling (2.9) between

M2-branes and form fields. In this section we shall test and justify the obtained candidate

by comparing it with the R-R coupling in string theory (2.3) by reducing it to the ten-

dimensional type IIA superstring theory. Specifically we expand the action (2.1) and

compare the obtained result (2.3) with the dimensionally reduced WZ-type action of M-

theory (2.9).

– 5 –



J
H
E
P
1
0
(
2
0
0
9
)
0
2
2

According to the compactification procedure of ref. [7], we can split the transverse

scalars into trace and traceless parts,

Xi = x̌i + ixi, (i = 1, 2, . . . , 7),

X8 =
v

2
1 + x̌8 + ix8, (3.1)

where x̌I = x4
I
1
2 , xI = xα

I
σα

2 (α = 1, 2, 3), and v is a very large vacuum expectation value

of TrX8. We also introduce

A±
µ =

1

2
(Aµ ± Âµ), (3.2)

and then A−
µ becomes an auxiliary gauge field which we can integrate out using its equation

of motion. We can rewrite the covariant derivatives as

DµXI = D̃µXI + i{A−
µ ,XI} with D̃µXI = ∂µXI + i[A+

µ ,XI ]. (3.3)

In order to consider the type IIA limit for the coupling proposed in (2.9), we have to obtain

the form of covariant derivatives for the transverse scalars XI in the limit. Taking into

account the contributions from Chern-Simons term (2.6), the kinetic term for the transverse

scalar fields and the WZ-type terms, we will solve the equation of motion for A−
µ in the

limit of a large vacuum expectation value v and large Chern-Simons level k, with a fixed

v/k. It turns out that the leading term in the solution to A−
µ is linear in 1/v and we can

neglect every term containing A−
µ unless it is multiplied by v or k. Keeping this in mind

we rewrite the covariant derivatives for X8 and the other transverse scalars Xi as follows

DµX8 = ∂µx̌8 + iv

(

A−
µ +

1

v
D̃µx8

)

,

DµXi = D̃µXi. (3.4)

Here we notice that the appearance of A−
µ in the WZ-type action is only through DµX8,

which means it always appears in the combination (A−
µ + 1

v D̃µx8). A−
µ in the SX + SCS

also appears only in this combination as verified by ref. [7]. Therefore, applying the Higgs

mechanism, we make a shift of the gauge field A−
µ → A−

µ − 1
vD+

µ x8 to eliminate the traceless

part of the eighth scalar field x8 in the resulting Lagrangian. With this shift the covariant

derivative of X8 becomes

DµX8 = ∂µx̌8 + ivA−
µ . (3.5)

We also adopt the Higgs rule in ref. [8] for the covariant derivatives of the scalars Xi and

rewrite them as

DµXi → iD̃µX̃i, (DµXi)
† → −iD̃µX̃i, (3.6)

where X̃i = x̌i + xi are U(2) adjoint scalars satisfying the following defining properties,

{

(I) X̃†
i = X̃i : Hermitian

(II) X̃i → U †X̃iU for U ∈ U(2)
. (3.7)

– 6 –
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Now the action for the scalar fields (2.5) will take the following simple form

SX =

∫

d3xTr
(

− D̃µX̃iD̃
µX̃i − ∂µx̌8∂

µx̌8 − v2A−
µ A−µ − Vbos

)

+ O

(

1

v

)

, (3.8)

where Vbos is the potential term. This term will not be affected by the WZ-type action.

Therefore, we will not write it explicitly except in the final result. The Chern-Simons

action (2.6) also reduces to

SCS =
k

2π

∫

d3x ǫµνρTr
(

A−
µ F̃νρ

)

+ O

(

1

v

)

with F̃µν = ∂µA+
ν − ∂νA

+
µ + i[A+

µ , A+
ν ].

(3.9)

For our immediate purpose of solving the A−
µ equation of motion, we write only the part of

the WZ-type action that involves A−
µ explicitly, leaving the remaining part implicit until

the end of this section

SC =

∫

1

3!
d3x ǫµνρ Tr

{

µ2

2

[

1

2

(

Ĉµνρ + Cµνρ

)

− 3iλCµνiD̃ρX̃i + 3λCµν8(∂ρx̌8 − ivA−
ρ )

+
3

2
λ2

(

Ĉµij + Cµij

)

D̃µX̃iD̃νX̃j

−
3

2
iλ2Ĉµi8

(

D̃νX̃i(∂ρx̌8 + ivA−
ρ ) − (∂ρx̌8 − ivA−

ρ )D̃νX̃i

)

+
3

2
iλ2Cµi8

(

D̃νX̃i(∂ρx̌8 − ivA−
ρ )−(∂ρx̌8 + ivA−

ρ )D̃νX̃i

)

− iλ3CijkD̃µX̃iD̃νX̃jD̃ρX̃k

+ λ3Cij8

(

D̃µX̃iD̃νX̃j(∂ρx̌8 − ivA−
ρ ) − D̃µX̃i(∂ρx̌8 + ivA−

ρ )D̃νX̃j

+ (∂ρx̌8 − ivA−
ρ )D̃µX̃iD̃νX̃j

)]

+ (c.c.)

+
µ′

2

2

[

Cµνρij8X
†
ij8 + · · · +

3

2
iλ

(

Ĉµνij8k〈〈X
†
ij8D̃ρX̃k〉〉 − Cµνij8k〈〈Xij8D̃ρX̃k〉〉

)

+ · · ·

+ 3λ2Cµij8kl〈〈X
†
ij8D̃νX̃kD̃ρX̃l〉〉 + · · · +

1

2
iλ3Ĉij8klm〈〈X†

ij8D̃µX̃kD̃νX̃lD̃ρX̃m〉〉 + · · ·

+
1

2
iλ3Cij8klm〈〈Xij8D̃µX̃kD̃νX̃lD̃ρX̃m〉〉 + · · ·

]

+ (c.c.)

}

+ O

(

1

v

)

. (3.10)

For the terms proportional to µ′
2 in (3.10), we kept the leading terms proportional to v but

neglected all the higher order terms, O(k/v, k/v2, . . .). The reason is that, as we pointed

out before, µ′
2 ∼ β and we will show shortly that the numerical factor β is of the order of

1/k which is of order of 1/v.

The variation of the action with respect to A−
µ gives

0 = Tr

{[

− 2v2A−µ +
k

2π
ǫµνρFνρ + µ2vλǫµνρ

[

−
i

4
(Cνρ8 − C†

νρ8)

+
λ

4

(

(Ĉνi8 + Cνi8)D̃ρX̃i + D̃ρX̃i(Ĉνi8 + Cνi8)

)

−
iλ2

12

(

(Cij8 − C†
ij8)D̃νX̃iD̃ρX̃j

+ D̃νX̃i(Cij8 − C†
ij8)D̃ρX̃j + D̃νX̃iD̃ρX̃j(Cij8 − C†

ij8)

)]]

δA−
µ

}

. (3.11)

– 7 –
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After integrating out A−
µ , we recall that the two SU(2) groups will be identified and as a

result C and Ĉ become the same. As stated in the paragraph of (2.11), the pullbacked

form fields follow bifundamental (anti-bifundamental) or adjoint representation in order to

maintain gauge invariance. As in (3.1), the (anti-)bifundamental three- or six-form fields

are also decomposed into trace and traceless parts, C = Č 1
2 + iCα σα

2 . On the other hand,

in ten-dimensional type II supergravity, the NS-NS and R-R form fields after pullback

are in adjoint representation. Mimicking the case of scalar fields in (3.6)–(3.7) which is

consistent with the compactification procedure [7, 8], we naturally define the U(2)-adjoints

of pullbacked form fields in ten dimensions by the following linear combination,

C̃ = Č
1

2
+ Cα σα

2
=

1

2
(C + C†) −

i

2
(C − C†). (3.12)

Note that the pullbacked form fields in adjoint representation are left as they are. Along

this line, we identify the NS-NS two-form field in ten-dimensions from those in eleven-

dimensions as

B̃PR =
1

4

[

CPR8 + C†
PR8 − i(CPR8 − C†

PR8)
]

, (3.13)

where we choose 1/4 as a normalization for NS-NS two-form field. Then the quantity inside

the inner bracket in (3.11) gives the traceless part of pullback of B̃µν ,

P [B̃µν ] = B̃µν + λB̃µiD̃νX̃i + λD̃νX̃iB̃µi

+
λ2

3

(

B̃ijD̃νX̃iD̃ρX̃j + D̃νX̃iB̃ijD̃ρX̃j + D̃νX̃iD̃ρX̃jB̃ij

)

. (3.14)

On the other hand, since δA−
µ is traceless, the product of the trace part of P [B̃µν ] and

δA−
µ is also traceless. Therefore, the A−

µ equation of motion is simplified as

0 = Tr

{[

− 2v2A−
µ +

k

2π
ǫµνρ

(

Fνρ + µ2vλ
2π

k
P [B̃νρ]

)]

δA−
µ

}

. (3.15)

Noting that the Yang-Mills coupling constant gYM in the effective action of two D2-branes,

the dimensionless string coupling constant gs, and the string scale λ̃ are given by

gYM =
2πv

k
, gs = g2

YMls, λ̃ = 2πl2s (3.16)

with µ2λ = 1
4π2l3

P

2πl
3/2
P and lP = g

1/3
s ls, A−

µ in (3.15) is

A−
µ =

1

2gYMλ̃v
ǫ νρ
µ

(

P [Bνρ] + λ̃Fνρ

)

, (3.17)

where Bµν is the traceless part of B̃µν .

The gauge singlet scalar x̌8 is dualized to a U(1) gauge field by replacing

∂µx̌8 =
1

2gYM
ǫµνρF̌

νρ, (3.18)
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where F̌νλ is a U(1) gauge field strength. The action for the scalar fields SX (2.5) is now

given by

SX =

∫

d3xTr

[

− D̃µX̃iD̃
µX̃i −

1

2g2
YM

F̌µν F̌µν

+
1

2g2
YM

(

Fµν +
1

λ̃
P [Bµν ]

)2

− Vbos

]

+ O

(

1

v

)

, (3.19)

while the Chern-Simons action (2.6) is given by

SCS =

∫

d3xTr

[

−
1

g2
YM

(

Fµν +
1

λ̃
P [Bµν ]

)

Fµν

]

+ O

(

1

v

)

. (3.20)

For the R-R three-form fields in ten dimensions, we define the U(2) adjoint antisym-

metric three-form fields by using (3.12),

C̃PRS =
1

2

[

CPRS + C†
PRS − i(CPRS − C†

PRS)
]

, (3.21)

where we choose 1/2 as a normalization different from the case of NS-NS two-form field.

Then we have the C(3) part of the WZ-type action SC ,

S
(3)
C =

∫

d3x ǫµνρ×

× Tr

{

µ2

3!

[

C̃µνρ + 3λC̃µνiD̃ρX̃i + 3λ2C̃µijD̃µX̃iD̃νX̃j + λ3C̃ijkD̃µX̃iD̃νX̃jD̃ρX̃k

]

+ µ2λ

(

vP [Bµν ]A−
ρ + P [B̌µν ]∂ρx̌8

)}

+ O

(

1

v

)

, (3.22)

where P [B̌µν ] is the trace part P [B̃µν ]. Substituting (3.17)–(3.18) into (3.22) for A−
µ and

∂ρx̌8 and taking into account the constants given in (3.16), we obtain

S
(3)
C =

∫

d3x Tr×

×

{

µ2

3!
ǫµνρ

[

C̃µνρ + 3λC̃µνiD̃ρX̃i + 3λ2C̃µijD̃µX̃iD̃νX̃j + λ3C̃ijkD̃µX̃iD̃νX̃jD̃ρX̃k

]

−
1

g2
YMλ̃

(

λP [Bµν ]
(

Fµν +
1

λ̃
P [Bµν ]

)

+ λP [B̌µν ]F̌µν

)}

+ O

(

1

v

)

. (3.23)

In order to match the mass dimension of the ten-dimensional transverse scalar fields,

we rescale the scalar fields as X̃i →
X̃i

gYM
. Applying this rescaling to (3.19), (3.20), (3.23)

and summing them, we get

SX + SCS + S
(3)
C =

∫

d3x Tr

{

1

g2
YM

[

− D̃µX̃iD̃
µX̃i −

1

2

(

F̌µν F̌µν +
2

λ̃
F̌µνP [B̌µν ]

)

−
1

2

(

Fµν +
1

λ̃
P [Bµν ]

)(

Fµν +
1

λ̃
P [Bµν ]

)

−
1

2
[X̃i, X̃j ][X̃i, X̃j ]

]

+
µ2

3!
ǫµνρ

[

C̃µνρ + 3λ̃C̃µνiD̃ρX̃i + 3λ̃2C̃µijD̃µX̃iD̃νX̃j + λ̃3C̃ijkD̃µX̃iD̃νX̃jD̃ρX̃k

]}

,

(3.24)
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where we used the explicit form of the scalar potential Vbos in ref. [7].

Next we turn to the C(6) part of SC . After the aforementioned rescaling X̃i →
X̃i

gYM
,

the Higgs rule for Xij8 [8] becomes

Xij8 →
v

4g2
YM

[X̃i, X̃j ], X†
ij8 → −

v

4g2
YM

[X̃i, X̃j ]. (3.25)

According to (3.21), we introduce the U(2) adjoint antisymmetric six-form fields,

C̃PQRSTV =
1

2

[

CPQRSTV + C†
PQRSTV − i(CPQRSTV − C†

PQRSTV )

]

, (3.26)

and identify the R-R five-form fields in ten-dimensional type II string theory as

C̃PQRST = C̃PQRST8. (3.27)

The first term in the C(6) Lagrangian in (3.10) is given by

µ′
2

2
Tr

(

CµνρIJKX†
IJK + C†

µνρIJKXIJK

)

= −i
3vµ′

2

8g2
YM

Tr
{

− i(Cµνρij8 − C†
µνρij8)[X̃i, X̃j ]

}

+ O

(

1

v

)

. (3.28)

Since [X̃i, X̃j ] is traceless, the product (Cµνρij8 + C†
µνρij8)[X̃i, X̃j ] is traceless. Therefore,

we can freely include this term in the last equation (3.28) to get

µ′
2

2
Tr

(

CµνρIJKX†
IJK + C†

µνρIJKXIJK

)

= −i
3vµ′

2

8g2
YM

Tr
(

C̃µνρij8[X̃i, X̃j ]
)

= −i
µ2λ̃

2
Tr

(

C̃µνρij [X̃i, X̃j ]
)

. (3.29)

In the second equality we have used µ′
2 = βλµ2 and have chosen β = 4π

3k in order to match

the coefficient with the coefficient of the corresponding term in type IIA string theory

in (2.3). Following the same procedure, we can calculate the remaining terms in the C(6)

Lagrangian in (3.10),

3

2
µ′

2λTr
(

CµνLIJK〈〈X†
IJKDρXL〉〉

)

+ c.c.

= −
3i

2
µ2λ̃

2Tr
(

C̃µνijk〈〈[X̃i, X̃j ]D̃ρX̃k〉〉
)

, (3.30)

3

2
µ′

2λ
2Tr

(

CµLMIJK〈〈X†
IJKDνXL(DρXM )†〉〉

)

+ c.c.

= −
3i

2
µ2λ̃

3Tr
(

C̃µijkl〈〈[X̃i, X̃j ]D̃νX̃kD̃ρX̃l〉〉
)

, (3.31)

1

2
µ′

2λ
3Tr

(

CLMNIJK〈〈X†
IJKDµXL(DνXM )†DρXN 〉〉

)

+ c.c.

= −
i

2
µ2λ̃

4Tr
(

C̃ijklm〈〈[X̃i, X̃j ]D̃µX̃kD̃νX̃lD̃ρX̃m〉〉
)

. (3.32)
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Summing (3.24) and (3.29)–(3.32), we finally reach

Stot =

∫

d3x Tr

{

1

g2
YM

[

− D̃µX̃iD̃
µX̃i −

1

2

(

F̌µν F̌µν +
2

λ̃
F̌µνP [B̌µν ]

)

(3.33)

−
1

2

(

Fµν +
1

λ̃
P [Bµν ]

)(

Fµν +
1

λ̃
P [Bµν ]

)

−
1

2
[X̃i, X̃j ][X̃i, X̃j ]

]

+
µ2

3!
ǫµνρ

[

C̃µνρ + 3λ̃C̃µνiD̃ρX̃i + 3λ̃2C̃µijD̃µX̃iD̃νX̃j + λ̃3C̃ijkD̃µX̃iD̃νX̃jD̃ρX̃k

]

+
µ2

3!
ǫµνρ

[

−
i

2
λ̃C̃µνρij8[X̃i, X̃j ] −

3i

2
λ̃2C̃µνijk〈〈[X̃i, X̃j ]D̃ρX̃k〉〉

−
3i

2
λ̃3C̃µijkl〈〈[X̃i, X̃j ]D̃νX̃kD̃ρX̃l〉〉 −

i

2
λ̃4C̃ijklm〈〈[X̃i, X̃j ]D̃µX̃kD̃νX̃lD̃ρX̃m〉〉

]}

.

The second and third terms in (3.33) are unified to form the kinetic term of U(2) gauge

field, as the gauge invariant combination on the world-volume of D-brane,

−
1

2g2
YM

Tr

[(

F̃µν +
1

λ̃
P [B̃µν ]

)(

F̃µν +
1

λ̃
P [B̃µν ]

)]

(3.34)

up to the quadratic term in P [B̌µν ] which belongs to nonlinear terms in C(3). Here we

notice that in addition to the natural couplings of the D2-brane to the three-form field and

the dual five-form field in type IIA superstring theory, the WZ-type action also produces

the coupling between F̃µν and B̃µν in the linearized nonabelian DBI action for D2-brane.

Unfortunately, however, the dimensional reduction of the WZ-type action (2.8) does not

produce C̃(3)∧F̃ and C̃(5)∧F̃ -terms which appear in ten dimensional WZ-type action (2.3).

We need more investigations in this direction.

Our derivation of the result in (3.33) is based on the elegant Higgs rule of [8]. Here

we would like to comment on a mild problem in applying these rules. We know that

the transverse scalars Xi are bi-fundamentals of SU(2)× SU(2). Therefore, to obtain the

U(2) adjoint scalar, the trace and the traceless part of these scalars should be combined

as X̃i = x̌i + xi. A similar rewriting should also be made for the form fields. When

we are dealing with the BLG theory without WZ-type coupling, the Higgs rule of [8] are

exactly the net effect of this splitting and recombination of the trace and traceless part

of the fields. However, in the presence of the WZ-type coupling containing more than

two covariant derivatives, the splitting and recombination of the trace and traceless parts

reexpress most of the terms of SC in terms of the U(2) adjoint fields except a few terms

which lead to some mismatch. To demonstrate this observation we consider the Cijk-term,

1

2
ǫµνρTr

[

Cijk(D̃µXi)
†D̃νXj(D̃ρXk)

† + C†
ijkD̃µXi(D̃νXj)

†D̃ρXk

]

= ǫµνρTr
(

C̃ijkD̃µX̃iD̃νX̃jD̃ρX̃k − 2C̃ijkD̃µx̌iD̃ν x̌jD̃ρxk − 2C̃ijkD̃µx̌iD̃νxjD̃ρxk

)

,

(3.35)

where the covariant derivative is given in (3.3). We have also made the following splitting

and recombination of the trace and traceless part of the three-form field

Cijk =
1

2
c̃ijk1 + icα

ijk

σα

2
, C†

ijk =
1

2
c̃ijk1− icα

ijk

σα

2
, C̃ijk =

1

2
c̃ijk1 + cα

ijk

σα

2
. (3.36)

– 11 –



J
H
E
P
1
0
(
2
0
0
9
)
0
2
2

Note that the the last two terms in (3.35) cannot entirely be expressed in terms of the U(2)

adjoint fields. This mismatch is generated from the cross terms between the trace and

traceless sectors. It is quite straightforward to show that, in the U(1)×U(1) ABJM theory,

there is no such mismatch. We will leave verification of the absence of such mismatch in

ABJM theory with arbitrary gauge group for the future work [19].

4 Quartic mass-deformation term from a C(6) term

Let us recall the bosonic part of supersymmetry-preserving mass-deformation terms in the

BLG theory [13, 14] in order to compare these with the WZ-type action in (2.9),

Sm =

∫

d3xm2 Tr

(

XIX
†
I + X†

IXI

)

+
4πm

k

∫

d3xTr
[

X3(X4)
†X5(X6)

† − X5(X4)
†X3(X6)

†

+ X7(X8)
†X9(X10)

† − X9(X8)
†X7(X10)

†
]

, (4.1)

where m is the mass parameter. According to [12], this mass term comes from the back-

ground four-form flux which is (anti-)self-dual in eight-dimensional transverse space. We

examine specifically how (4.1) can appear from WZ-type coupling (2.8). Due to the (anti-

)self-dual property of the flux, we should consider the contribution from both four-form

F(4) and dual seven-form F(7). Let us first take into account the contribution from F(7) by

turning on only specific components of F(7) as

FµνρIJKL =
βm

λµ′
2

ǫµνρTIJKL, (4.2)

where TIJKL is (anti-)self-dual in eight-dimensional transverse space

T IJKL = ±
1

4!
ǫIJKLI′J ′K ′L′

TI′J ′K ′L′ . (4.3)

The corresponding WZ-type action of our consideration (2.9) is

S
(6)
C =

∫

dxµ ∧ dxν ∧ dxρ µ′
2

2
Tr

[

CµνρIJK(XI)
†XJ(XK)† + (c.c.)

]

+ · · · . (4.4)

When the six-form CµνρIJK is the potential of constant seven-form field strength FµνρIJKL,

we obtain it explicitly,

CµνρIJK = λFµνρIJKLXL =
βm

µ′
2

ǫµνρTIJKLXL. (4.5)

Substituting the six-form field configuration (4.5) with (4.3) into the WZ-type action (4.4),

we have

S
(6)
C =

4πm

3k

∫

dxµ ∧ dxν ∧ dxρǫµνρ
1

2
Tr

[

TIJKLXL(XI)
†XJ (XK)† + (c.c.)

]

+ · · ·

= −
4πm

k

∫

d3xTr
[

TIJKLXL(XI)
†XJ(XK)† + (c.c.)

]

+ · · · , (4.6)
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which exactly coincides with the quartic mass-deformation term in (4.1) as far as the

four-form tensor TIJKL satisfies

T1234 = T5678 = 1, other independent components = 0. (4.7)

This configuration keeps the maximal supersymmetry N = 8, and turning on other com-

ponents of TIJKL in addition to (4.7) leads to less supersymmetry. The relation between

nonzero components of TIJKL and the number of supersymmetry has been studied in the

context of field theory [14, 20, 21] and in the dual AdS side [12].

The contribution from the four-form tensor is also calculated in a similar way.

From (4.2) the configuration of F(4) is

FIJKL ∼
βm

λµ′
2

TIJKL =
m

λ2µ2
TIJKL. (4.8)

Then the corresponding WZ-type action is

S
(3)
C ∼ µ2

∫

dxµ ∧ dxν ∧ dxρ Tr

[

m

λ2µ2
TIJKLλ4XL(DµXI)

†DνXJ(DρXK)† + (c.c.)

]

+ · · ·

= λ2m

∫

dxµ ∧ dxν ∧ dxρ Tr
[

TIJKLXL(DµXI)
†DνXJ(DρXK)† + (c.c.)

]

+ · · · .

(4.9)

Since λ2 ∼ l3P, this term does not contribute under the limit lP → 0.

We confirm the identification of a cubic WZ-type term (4.4) with a specific form of

constant (anti-)self-dual four-form flux (4.2) in Minkowski spacetime signature. If we take

a Euclideanization to the flux (4.2), then an overall imaginary number i appears in the left-

hand side. It implies that µ in (4.2) may not be a mass parameter but a chemical potential.

For the quadratic mass term which can be interpreted as the quadratic coupling of

form fields between M2’s, we do not have natural argument to fix it. In the case of string

theory, this coupling is obtained from the world-sheet disk amplitude with insertion of the

two R-R vertex operators. Though we basically have ambiguity for the position of two

insertions, we can avoid this ambiguity by introducing appropriate auxiliary fields [22, 23]

and compute the coupling at least for some particular cases [24, 25].

5 Conclusion and discussion

Once the world-volume action of N stacked M2-branes is determined, it is interesting to

understand how the M2-branes couple to the bulk fields. In this paper, we constructed the

WZ-type action which describes the coupling of the M2-branes to antisymmetric three- and

six-form fields in M-theory. We consider the BLG theory for two M2-branes and write down

a WZ-type action linear to antisymmetric three- and six-form fields in analogy with the

corresponding action in type IIA string theory. When it reduces to ten dimensions through

a circle compactification, our action reproduces the expected ten-dimensional coupling of

R-R and NS-NS form fields to D2-branes in type IIA string theory.

– 13 –



J
H
E
P
1
0
(
2
0
0
9
)
0
2
2

In addition to our main goal of obtaining the WZ-type coupling of M2-branes, we show

that a particular cubic WZ-type term can be identified with the quartic scalar interaction

in the supersymmetry-preserving mass deformation of the BLG theory. We made this

identification in a flat world-volume and transverse space by making an assumption that

the seven-form field strength is constant and is proportional to the mass parameter of mass

deformation term.

A few discussions are in order. Though the ten-dimensional WZ-type action (2.1) is

restricted to the terms linear in C̃(n), it contains C̃(n)∧eB̃ where B̃ is NS-NS two-form field.

Since the NS-NS two-form field in string theory comes from a part of C(3) in M-theory,

inclusion of quadratic or higher order terms in C(3) in addition to the WZ-type action (2.9)

seems natural. For instance the quadratic term in C(3) is

SC2 =
µ′′

2

2

∫

2+1
Tr

(

P [〈iX iX iX〉C(3) ∧ C(3)]
)

= 5µ′′
2

∫

1

3!
d3xǫµνρ Tr

[

1

2
Ĉ[µνρ〈〈C

†
IJK]XIJK〉〉 +

1

2
C[µνρ〈〈CIJK]X

†
IJK〉〉

+ 3λC[µνL〈〈C
†
IJK]XIJK(DρXL)†〉〉

+
3

2
λ2Ĉ[µLM 〈〈C†

IJK]XIJK(DνXL)†DρXM 〉〉

+
3

2
λ2C[µLM 〈〈CIJK]X

†
IJKDνXL(DρXM )†〉〉

+ λ3C[LMN 〈〈C†

IJK]XIJK(DµXL)†DνXM (DρXN )†〉〉 + (c.c.)

]

,

(5.1)

where µ′′
2 = β′λµ2. Like β, the value of β′ is also determined by comparing this term with

an appropriate term in the corresponding action of type IIA superstring theory, after a

circle compactification. Specifically, when β′ = β = 4π/3k, this term exactly coincides

with the C(3) ∧ B term in (2.1).

In this paper we constructed the bosonic sector of WZ-type action coupled to the

world-volume fields of M2-branes. If we supersymmetrize what we obtained, then we may

reach the supersymmetric WZ-type action in M-theory. Though we fixed the coefficient of

the WZ-type action (2.9) by comparing with the terms of the ten-dimensional R-R coupling

action (2.1) through the compactification of the eighth transverse direction, this indirect

fixation procedure can be reconfirmed by constructing the supersymmetric WZ-type action

coupled to M2-branes. Then, this understanding will also help the extension to general

case of arbitrary number of stacked multiple M2-branes of which the world-volume theory

is described by the N = 6 superconformal Chern-Simons gauge theory with U(N)×U(N)

gauge symmetry. We will report the construction of WZ-type coupling in the context of

ABJM theory for arbitrary number of M2-branes in the subsequent work [19].

In the BLG and ABJM theories, M2-branes and M̄2-branes are not distinguished as the

case of DBI type world-volume action of D-branes. The D- and D̄-branes carry opposite sign

R-R charges and are distinguished by the R-R coupling (2.1) in type II string theories [3].

Similarly the M2- and M̄2-branes are also distinguishable by the analogue of WZ-type in
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the M-theory (2.9). This will also let the construction of world-volume action of M2M̄2

pair without supersymmetry tractable.
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